Exam 1. Econ499. Spring 2011

Professor Lutz Hendricks

UNC

Instructions:

- The exam consists of 3 questions.
- Answer all questions.
- *Explain* your answers do not just state them.
- Show your derivations do not just state the final result.
- Do not refer to any notes or books. You may use a calculator.
- The total time is 75 minutes.
- The total number of points is 100.

1 Production Model

Consider the production function $Y = AK^{\alpha}(hL)^{1-\alpha}$. *h* is a measure of human capital per person. Assume $\alpha = 0.5$. You have data for two countries:

Country	Y/L	K/L	h
1	\$10,000	\$20,000	1
2	\$3,000	\$6,000	0.5

- 1. [4 points] Write the production function in per capita terms (y = Y/L) as a function of k = K/L.
- 2. [6 points] Compute each country's productivity level, A.
- 3. [12 points] Decompose the output gap between the two countries, y_1/y_2 , into the contributions of capital, human capital, and productivity.
- 4. [12 points] Plot the production functions of the two countries (not to scale). Show the contributions of K/L and (A and h) (combined) to the Y/L gap between the two countries. (It's hard to separately plot the contributions of A and h.)

2 Solow Model

Consider a modified Solow model that gives rise to the following law of motion for per capita capital:

$$\dot{k}_t = sAk_t^{\alpha} - [\bar{\delta} + \delta k_t^{\alpha}] \tag{1}$$

Relative to the usual Solow model, the depreciation part has changed. Some amount $\overline{\delta}$ depreciates no matter what. In addition, depreciation is no longer linear in capital (δk_t^{α} instead of δk_t). Assume that $sA - \delta > 0$.

- 1. [8 points] What happens to the change in capital (k_t) as capital goes to 0? What happens as capital gets large?
- 2. [8 points] Derive the steady state capital stock.
- 3. [12 points] Draw the Solow diagram for this model. Hint: it is easiest to plot $(sA \delta)k_t^{\alpha}$ as one line and $\bar{\delta}$ as the second.
- 4. [7 points] Is the steady state stable? Explain.
- 5. [8 points] What happens to the growth rate of capital as time goes by. Assume that the economy starts with k_0 above the steady state. Explain.

3 Shorter Questions

- 1. [9 points] Assume that a variable x starts at value 1, then grows at 5% per year for the first 20 years and at 3% per year for the next 30 years. Plot $\log(x)$ over time and explain your graph. Calculate the value of x at the end of the 50 year period.
- 2. [14 points] Briefly summarize how the evidence on former colonies supports the hypothesis that institutions are important for cross-country income gaps.

End of exam.

Figure 1: Production Model

4 Answers

4.1 Production Model

- 1. $y = Ak^{\alpha}h^{1-\alpha}$.
- 2. $A = y/(k^{\alpha}h^{1-\alpha})$. $A_1 = 70.7$ and $A_2 = 54.8$.
- 3. Just take the ratio of the two production functions. Productivity: $A_1/A_2 = 1.29$. Capital: $(k_1/k_2)^{\alpha} = 1.83$. Human capital: $(h_1/h_2)^{(1-\alpha)} = 1.41$.
- 4. See figure 1.

4.2 Solow Model

- 1. Write $\dot{k}_t = (sA \delta)k_t^{\alpha} \bar{\delta}$. As $k \to 0$ we find $\dot{k} < 0$. As $k \to \infty$ we find $\dot{k} \to \infty$.
- 2. Steady state:

$$k^* = \left(\frac{\bar{\delta}}{sA - \delta}\right)^{1/\alpha} \tag{2}$$

- 3. This looks like a Solow model, except that the depreciation line is horizontal at $\overline{\delta}$.
- 4. The steady state is not stable. To its right, k keeps growing forever.
- 5. The growth rate is $\dot{k}/k = (sA \delta)k^{\alpha-1} \bar{\delta}/k$. It goes to zero as time goes by. Capital keeps growing, but at ever smaller rates. This is due to diminishing marginal products.

4.3 Short Questions

- 1. $x(50) = x(0)(1.05)^{20}(1.03)^{30} = 6.44$. The plot is a straight line, starting at $\log(x) = 0$ with a slope of 0.05 for 20 years and a slope of 0.03 for 30 years.
- 2. See the class slides. Key points:
 - (a) The evidence: reversal of fortune among colonies, but not among non-colonies. Current institutions are correlated with measures of GDP and settler mortality in the 16th century.
 - (b) Interpretation: Some colonies could be settled (low population density; few diseases). In those colonies, "European style" institutions were put in place. Other colonies could not be settled (large indigenous population; diseases). In those colonies, repressive institutions were put in place. Institutions are highly persistent over time and still affect economic outcomes today.

End of file.